Any two numbers are different and the length is\(n\)Sequence of\(a\), yes\(q\)A message, such as\(a_l, a_{l+1},\cdots,a_r\)The minimum value of is\(r\) .
Is there a contradiction?
Contradictions fall into two categories:
- If the minimum values of the two intervals are the same, but the two intervals do not intersect (each number is different)
- If the union of several larger intervals contains the intersection of some smaller intervals
The latter is equivalent to a data structure that can be maintained
- Merge interval
- Interval inclusion relation
Merge intervals can be violent and search sets to put each\([l,r]\)All the fathers in the chain\(r\)In fact, the complexity is quite low (and the magic of the collection is shared qwq)
The code is about this
using namespace std;
const int N = 1e6+500, Q = 25555, I = 0x3f3f3f3f;
inline void chkmin(int& a, int b){if (a > b) a = b;}
inline void chkmax(int& a, int b){if (a < b) a = b;}
struct Input
{
int l, r, v;
bool operator < (const Input& x)const{return v > x.v;}
}inp[Q], t[Q];
int n, q;
struct Magic
{
int fa[N]; // dsu
void init(){for (int i=0; i<=n+3; i++) fa[i] = i;}
void clear(){init();}
int get(int x){return fa[x] == x ? x : fa[x] = get(fa[x]);}
void merge(int l, int r)
{
for (int u = l; u <= r; u++)
fa[get(u)] = get(r+1); // dsu union
}
bool crs(int l, int r){return get(l) > r;}
Magic(){init();}
}T;
bool check(int r) // -> is NOT true
{
T.clear();
for (int i=1; i<=r; i++) t[i] = inp[i];
sort(t+1, t+1+r);
int lmin, lmax, rmin, rmax;
lmin = lmax = t[1].l; rmin = rmax = t[1].r;
for (int i=2; i<=r; i++)
{
if (t[i].v == t[i-1].v) // Case 1
{
lmin = min(lmin, t[i].l); lmax = max(lmax, t[i].l);
rmin = min(rmin, t[i].r); rmax = max(rmax, t[i].r);
if (rmin < lmax) return true;
continue;
} // Case 2
if (T.crs(lmax, rmin)) return true;
T.merge(lmin, rmax);
lmin = lmax = t[i].l; rmin = rmax = t[i].r;
}
return T.crs(lmax, rmin);
}